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This guidance considers the use of static analysis and formal verification techniques for 
Machine Learning (ML) models that may be deployed in autonomous vehicles. 

Formal verification of ML models 

Formal verification is the process of establishing whether a system satisfies some 
requirements (properties), using formal methods of mathematics. Traditionally, formal 
methods are based on the premise that we can determine the functional properties of a 
system by the way we design it and implement it. While this holds for traditional systems, it 
does not hold for ML systems as a whole, as their design determines how they learn, but not 
what they will learn [1]. Furthermore, formal verification methods are based on the premise 
that we can infer functional properties of a software product from an analysis of its source 
code. Again, while this holds for traditional systems, it does not hold for ML systems, whose 
behaviour is also determined by their learning theory. Indeed, it is the case that traditional 
formal methods techniques cannot be applied as they are. Novel verification techniques and 
specifications thus must be devised to address ML algorithms, specifically, for Neural 
Networks (NNs). 

Research to create formal methods that can verify ML models is in its infancy. The difficulty 
arises given that the output behaviour of an ML algorithm may not always be clear or 
expected relative to the inputs. To consider the novel complexities of ML systems, 
traditional formal properties must be reconceived and redeveloped for ML models. 

Formally verifying pointwise robustness 

The majority of existing research has attempted to find ways of specifying types of ML 
robustness (i.e. pointwise robustness) that would be amenable to formal verification of an 
ML model’s robustness. Pointwise robustness aims to identify how sensitive a classifier 
function is against small perturbations in the input distribution. A number of techniques 
have been developed, including Pulina et al. [2], Huang et al. [3], and most notably, the tool 
Reluplex [4]. No matter the technique, these verification methods suffer from the same set 
of limitations: 

• It is difficult to define meaningful regions and manipulations 

• The neighbourhoods surrounding a point that are used currently are arbitrary and 
conservative 

• We cannot enumerate all points near which the classifier should be approximately 
constant (i.e. we cannot predict all future inputs) 

Some preliminary work extending [3] has been introduced, proposing that instead of relying 
on an exhaustive search of a discretised region, one can compute the upper and lower 
bound case confidence values of a point [5], which may alleviate some of these limitations. 
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Generally speaking however, pointwise robustness, although an interesting property, is not 
expressive enough nor conducive to producing confidence for assuring an ML model, given 
that one cannot predict all future inputs. It is thus unclear what assurances, if any, a 
pointwise robustness analysis would provide, or to see the claim for which pointwise 
robustness can provide support or evidence. 

Formally verifying well-specified systems 

Reluplex [4] can also be used to verify more general behaviours regarding ML algorithms. 
The Reluplex technique requires functional specifications, written as constraints, to be fed 
into a specialised linear programming solver to be verified against a piecewise linear 
constraint model of the ML algorithm. The Reluplex technique provides a promising solution 
for well-specified traditional systems requiring new ML implementations.  

However, like similar techniques the generalisation of this to deep learning is challenging as 
it requires well-defined, mathematically specifiable system specifications as input. These 
techniques are thus only applicable to well-specified deterministic or tractable systems that 
can be implemented using traditional methods (e.g. programming in C) or via ML models. As 
a consequence, these techniques cannot be straightforwardly applied to arbitrary contexts, 
and domain-specific effort is currently required even to specify properties of interest, let 
alone verify them. Consider for example perception systems (e.g. camera, LIDARs, sensor 
fusion) crucial to the operation of autonomous vehicles: their system specifications are not 
bounded, and are not amenable to formalisation of constraints that can be proved. 

Static analysis of supporting systems 

Static analysis is the term used for source and object code analysis that examines the code 
without execution, and may encompass some formal verification techniques. These analyses 
do semantic and syntactic checks on the source and object code. Static analysis can be 
performed on software that supports ML functionality to look for potential issues and 
vulnerabilities that could impact the performance or functionality of the code. ML software 
has been shown to be vulnerable to traditional threats. Overflow errors within supporting 
software have been seen to propagate and affect the functionality of an ML model (such as 
where a Not a Number (NaN) code error caused uncontrolled acceleration) [6]. 

Run-time issues such as overflow/underflow and access to data out of bounds can directly 
impact on the performance of an ML element such as a neural network, as it may perform a 
series of matrix multiplications on edges and nodes. That is, for ML it may be more difficult 
to identify which parts of the software are affected by the error, and hence what the impact 
might be. Consider a loop that can potentially access data outside an array. For a 
traditionally developed system, the final purpose of that array and the loop are likely to be 
relatively transparent (even when found in a generic library function). However, for ML, the 
use of undefined data in one array manipulation may or may not have an impact, depending 
on the sensitivity to that data point. Additionally, overflow/underflow in a neural network 
could lead to edges or nodes having a multiplication factor of zero for some operations. 
Again, it is difficult to predict the impact this might have on a task such as classification 
except in a very broad sense. 

The aforementioned errors are only applicable to statically-typed languages such as C and 
C++, not to a dynamically typed language such as Python (a popular language utilised in the 
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implementation of numerous ML libraries and frameworks) since the semantics and 
implementation of the language itself prevent overflow/underflow errors.  

Python has an increasing presence in the safety-critical due to its use within popular ML 
frameworks (e.g. TensorFlow, PyTorch, etc). These frameworks can be deployed in safety-
critical contexts, such as autonomous vehicles, yet static analysis and formal verification 
techniques for the Python language are almost non-existent. The lack of existing techniques 
is due to a few factors: 

• Dynamically and weakly typed languages are often discouraged from use in safety-
critical domains given the common type faults they may produce 

• Python’s lack of use in critical domains has never incentivised the creation of novel 
formal analysis techniques addressing dynamically typed languages 

• Dynamically typed languages are significantly harder to statically analyse, or verify, 
given the difficulty of constructing control or data flow graphs, which are easier to 
derive from languages such as C/C++ 

In a dynamically typed language, every variable name is bound only to an object. Names are 
bound to objects at execution time by means of assignment statements, and it is possible to 
bind a name to objects of different types during the execution of the program. This 
behaviour is not easily captured, particularly in a program logic setting. A semantic analysis 
currently cannot alleviate this issue, as the semantics of Python are intricate and complex, 
and yet to be fully defined. No static analysis or formal verification methods exist to allow 
for the analysis of Python code, beyond simple linear analyses. Indeed, this is a significant 
gap within the formal methods field given the deployment of autonomous vehicles utilising 
Python. 

Further details on this guidance can be found in [9]. 

Example of application of guidance 

This section provides an example of preliminary static analysis experiments on the You Only 
Look Once (YOLO) [16] CNN source code using Polyspace Bug Finder [7]. YOLO provides 
object recognition support, as illustrated in Figure 1. Polyspace is an industry standard tool, 
used by many developers of high integrity software, to look for potential bugs and to assure 
compliance with the MISRA coding guidelines [8]. 



Body of Knowledge 2.3.3 – cross-domain and automotive practical guidance 
Copyright © 2020 University of York 

 

 

Figure 1: Example object recognition support by YOLO on public road 

The analysis identified potential modifications that could be made to the off-the-shelf (OTS) 
software, improving robustness without impacting on the deployed functionality. This could 
support a case for high integrity use, along with additional evidence of the appropriateness 
of the training. Note that security concerns of using a public source image training set 
should also be considered, as this could provide an attack vector. However, our experiments 
were limited to examining the underlying source code only. 

We analysed the core C and C++ software YOLO software library, including: 

• The main classification application, which loads a weights and configuration file (in 
this case trained using COCO) and applies it to a specified image file 

• YOLO libraries including training code (which would not typically be used during 
operation but would impact the robustness/reliability of the output), image 
manipulations and matrix calculations 

• Third-party GPU source code from NVIDIA as the library supports multi-threaded 
training using a GPU 

• Third-party code for accessing a webcam for “live streaming” of input/output 

The latter two items were included so that the potential impact of concurrency problems 
could be considered. 

Run time errors results 

A number of different run-time errors were identified. Issues that could be of concern 
included: 

• Known security vulnerabilities such as file I/O, which could be hijacked for system 
files, and buffer/data vulnerabilities allowing memory to be overwritten 

• A number of memory leaks, such as files opened and not closed, and temporarily 
allocated data not freed, which could lead to unpredictable behaviour, crashes, and 
corrupted data 
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• A large number of calls to free() where the validity of its use is not checked, which 
could lead to incorrect (but potentially plausible) weights being loaded to the 
network 

• Potential “divide by zeros” in the training code, including cost calculation, which 
could lead to crashes during online training, if the system were to be used in such a 
way 

MISRA 2012 analysis 

Compliance to the mandatory MISRA 2012 guidelines was assessed. Violation of these rules 
often means that bugs are present in the code. A summary is presented below. 

• Rule 21.17 – violations that could lead to undefined behaviour if the input 
configuration files were corrupted or had invalid data. The impact of this might be 
undefined behaviour, either causing YOLO to crash or not be started. 

• Rule 21.18 – violations that could lead to memory leaks. Again, this is a potential 
reliability issue. 

Mitigations include having systems using YOLO detecting its liveness and having a safe state 
response if possible. 

Concurrency analysis results 

Polyspace identified a potentially conflicting access to a buffered image array during 
concurrent display/processing of a live webcam stream. The code is in a demo of 
functionality but for the purposes of exploration we have assumed it could be used, for 
example, to display to a car operator the output of the classifier. This could have two issues: 

1. If the display is being used by an operator and the data appears in a corrupted form 
it could reduce confidence in the image classification and the operator would take 
control (if this option was available) 

2. If the data being used during image classification was corrupted then items could be 
missed, mis-classified, or detected and classified when they did not exist. This is 
potentially more serious, but may depend on repeated identical failures input into a 
decision-making element. The decision-making element would need awareness of 
this type of failure mode and to have an appropriate mitigating action. 

Running the YOLO source code through Polyspace indicated a number of potential issues 
that could impact the reliability and also the safety of the code if it were to be implemented 
as part of a safety critical system. The case study has demonstrated that traditional 
approaches to static analysis are still applicable to the supporting software, and could help 
make the code more trustworthy in operation and improve an assurance case for its use. 
However, further analysis is still needed, for example to consider the impact of 
mathematical bugs in training routines which might have impacted the CNN functionality 
derived.  
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